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1 Introduction to Scaling Vectors and Multi-
wavelets

L b

I , , 1 , I , ,
, , * , ,

Haar Basis: @H(x) =

f, = fl + 92

V2 = VI@W2

*H(X) =

f2(x) = a4H(4x) +bd~(4x – 1) -1-c@(4z – 2) + d4~(4z – 3)

+ [~ – *] @T2z) + [a – *] @~(2x – 1)
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4H(Z) = 4~(2z’) + &(2z – 1)

?JH(x)= qw(24 – gF(2z - 1).

Two-Scule Dilation Eqaations/Refinement Equations

If ~(x) G L2(IR), i.e., I[fllz:= I/~< m, then

W~ =. C1L2(R)span {$; = 2k/2$H(2k “ –t) [k, f c Z) .

Wavelet Spaces

Vk = cl~~(~) span {#fi = 2k/2#H(2k . –/!) Ik, 1 G Z}

Two-Scale

Note that

Principal Shifl-Invariant Spaces with generator q$H

Vk = t(k-.l @ w.., k ~ z

fine scale ~ coarse scale @ detail correction



Properties of the Haar Scaling Fhnction and Wavelet

●

●

●

Vanishing Mornenk J_m‘w ?JJf(z)cfz = o

Two-Scale Dilation Equations

(Here gO= g, = h. = –hl = 1.)

Compact Suppoti both #H and @ vanish outside a closed interval of
finite length;

Smoothness: ~H and +H piecewise continuous;

Orthogonaliiy:

f:: ?/Y(2% – t’)#H(2~x – rz)dz =
{

2k k=mandl!=n

O otherwise;

f:: $W(2% – @/F(2~z – n)d$ =
{

2k .?=n
O otherwise;

f~~ #H(2kz – l)4~(2kz – n)dx = O;

●

●

The one-parameter family {#H(. – /) 1/ E Z] forms an orthogonal

bask of VO. (Thus, the on~parameter family {#H(2k o–1) I / 6 Z} an
orthogonal basis of Vk, for k c Z.)

The two-parameter family {@fi := 2k/2@(2k “ –1) I k, 1 E Z} forms an
orthonormzd basis of L2(IR).
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Example 1.1 (Hat-function) Let

‘{

1-121, Iz[ <1
h(x) := ~

? otherwise.

The hat function is a linear B-spline with knots {(–1, O), (O,1), (1, O)})

Define the principal shift-invariant space Vo[h] with generator h by

Vo[h] := d~2(R) span {h(. – ~) I ~ E ~}

Exercise : Show that h generates an MRA!

Short-hand notation:
b (El)wl.

Note that

h(x) = ;h(2x – 1)+ h(2~) + ~h(2z + 1) (Verify this!) (1.3)

Hence, the integer shifts are noi orthogonal to each other. In other words,
the MRA is not orthogonal.

Does there exist a wavelet ~ with smallest possible support, say [-1/2,1]? If
so, then

~(x) = a . h(2z) + b- h(2x – 1), a, bcIR.

Now, f:l h(z) ‘?j(Z)dX = O; thus, a possible choice for a and b is a = –(3/5)h.
(Verify this!) Choosing a = 1 gives

~(x) = h(2x) - (5/3). h(2z – 1).

However, @ is neither orthogonal to its shifts nor to the nonzero shifts of h.
(Show this!)

Exercise : Does there exist a wavelet 1# associated with h and supported on

[-1, I] that is orthogonal to its nonzero shi~ as well as the shifis of h ?
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Example 1.2 Cardinal B-splines.

Terminology:

●

‘o

●

●

The support of a function ~, supp~, is the largest closed set for which
f(x) #o.

P.: vector space of all real polynomials of degree at most n;

C“: vector space of all m-times continuously differentiable functions;
also, let C = Co.

C@: vector space of all infinitely differentiable functions.

Definition 1.4 (Cardinal B-Splines) Let Nl(x) := xIo,I). For m 2 2,

define

Nm(z) := (Nm_l * N,)(z) = JSWi&,(X – i) N1(t)dt ‘

I = f; Nm.,(x – ?)df. I

Exerche : Calculate N2 and N3!

Eze7cise : Show that suppN~ = [0,m)! (Use induction on m!)

13=eTcise : Verify, at least formally, that Ii%+: Nm(x) G Cw!

Let Vom := o[N~], for a fixed m > 1. Then Vom consists of all functions
f e cm-’ n L’(R) whose restriction to an interval of the form [4,f + 1),
t E Z, is a polynomial of degree at most m – 1 (Verify this!). Thus, for all
k~Z

Employing properties of the cardinal 13-splinesone shows that the collection
{N~(. – f) 11 g Z} forms a Riesz basis of ~m. (cf. [7])
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Example 1.3 The Hat-function revisited. (Donovan-Geronimo-Hardin-Roach)

Definitionl.5 (Finitely Generated ShifbInvariant Space) Aspace V
is called a jinitely genemted shift-invariant space if there is a finite set ~ =

(4’ ,..., ~)T OJL2-functions such that

V = cIL2(R) span{~(” –1) I i = 1,..., r;f E Z}. (1.5)

We write

T[@]:=Spall{&”( --t) Ii=l,..., r;fc ~} (1.6)

and

u[@] := cl~2(~) T[@]. (1.7)

Let D} := ~(”/2). The space V is called refinable if

Remark: If V = a[@] then V is refinable iff

Let w ~ L2(IR) be supported on [0,1] and let V be the space generated by h
and w:

v := o[h, w]

Introduce new generators by

$$1 := w

~ (h, W) (Iz,w(. + 1)) W( + ~,
=

-m”- (W,w} .

Need

(@2,@2(. – 1)} = (h, h(. – 1))–
(h, w)(w, h(. – 1)) = ~

(w, w)

I(h, h(. - 1))= @’@[;&’Xl (1.10),
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{

X(I –z) o~s<l
Let q(x):= o = 2(1 – Z)x[o,q = @ – z)+.

otherwise
,.

Choose w(x) :=q(z)+cq2(z). Then

(h,w)= (W,h(--l))

= (1/60 )(5+a) (Verify this!)

(?.0,?.0} = (1/630) (21+9ct+a2) (Verify this!)’

Hence, Eqn. (1.10) reads:

a2 + 3oa + 105 = 0,

or~= –15 + 2~. Choose (–)-sign!

1.5

1

A
-1 1

-13.25

Figurel: The orthogonal generators@ and @2.

E~ercise : Repeat the above example with W(Z) := 43(1 – iz)jy[~,l]!
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Definition 1.6 (Multiresolution Analysis of Multiplicity r) A rnuMres-
olution analysis of multiplicity r of L2(Et) wnsists of a sequence of approxi-
mation spaces {Vk}~~Z with the prope”dies:

Nestedness: For all k E Z, Vj ~ L2(JR) and V~ Q V~+l.

Approximation Property: lJkGzVkis denseinL2(~) andl%ez Vk= {0}.

Dilation-invariance: If f E V~ then $(2.) c V~+I.

Basis: There exisis a finite collection of L2-functions ~ := {$” : i =

1,. ... r}, calied a scaling vector or multiscaling function with the prop-
erty that

1.
V. = Vo[@] := CIU(RJspan {@(”-~) I ~ E ~} “ (1.11)

Finitely Generated Shift-invariant Space with generator @

2. The scaling vector@ is required to have stable integer shifts:

& z IK3112 s II ~’w” – w: < Zz IIG112> (1.12)
e~z

for positive constants I?l and Rz and all square-summable r x r
matrices (C’e)e~Z.

Here

(The transpose of a vector or matrix is denoted by ‘.)

An MBA is called orthogonal ifl the integer shifls of the scaling vector 4

form an orthogonal basis of V,.

Definition l.? (Multiwavelet) A finite collection of L2-functions @ :=

{$’ : i = 1>... , r] is called a multiwavelet ~ the two-parameter family

{4,! .–.- 2Vz~(2k . –/) : k, e G Z) forms an orthonormal, or more generally,

an unconditional basis of L2(IR).
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The nestedness of the spaces V~ implies that @ satisfies
dilation equation or matrix refinement equation

a two-scale

(1.14)

{Ct}tEZ r x r matrices, satisfying Z~,Z llCt112< ~.

Denote the L’-orthogonal complement of V~ in V&l by W.k+l. The existence
of a multiwavelet is paramount to finding r x r matrices (Hg)~Ez
properties that

~~ez G! @-wt = & A-,

(orthogonality of integer shifts for+)

EKZ & U-tit = & LX,,

(orthogonality of integer shifts ‘for $)

Etcz G ~zwl= %.,
(orthogonality between@ and+)

with the

(1.15)

(1.16)

(1.17)

(1.18)

Here l,X, and O.X. denotes the r x r identity, respectively, zero matrix.

llxevcise : Show that the shove equations for the matrices (He)eeZ follow
from

●

●

●

the conditions given below.

*(Z) = ~f,z H@(2x – 1); [

[(4(2’ . –1), 4(2’ . –q) = 2k&l~Irxr, I

(47(2’ . –4), $qzk’ . –1’)) = 2VW,WL.,

(4(2’ . –q, @(2~’ . –1’)) = Orxr.
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2 Construction of Daubechies and Spline Wavelets

Objective: Construct a ~amily of L2-functions ~ and @ with the properties:

1.

2.

3.

4.

5.

6.

7.

# generates an orthogonal MRA with @ being the associated wavelet.
This means that ~~~and ~~. satisfy the orthogonality relations.

The two-parameter family {+~e .–-– 2VZ~(2h . –f) I k,l G z} forms an
orthonormal basis of L2(IR).

JRq$(z)dx # O. (Necessary for technical reasons,)

+ and @ satisfiy two-scale dilation equations of the form

+ and @ have compact support. (This implies that the sums in the
above dilation equations are jinite.)

Vanishing moments for ~: & @#(z)dx = O, for p = 0,1,..., N – 1,
N > 1.3 Geometrically speaking this means “that # is orthogonal to
the space PN-I of real polynomials of degree at most N – 1:

@ and thus ~ should have some degree of differentiability which implies
that # will have a certain number of vanishing moments.

‘Vanishing moments are related to the regularity, i.e., the degree of differentiabllity,
of the function +, and thus also ~. The number of vanishingmoments is also connected
with the approximation order: If o has N varnishingmoments, then # (!) reproduces
polynomialsup to degreeN – 1, thatis,

z’= ~ cu@(x-t), p= O)l,...,l -l.
finite
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Short excursion into Fourier Theory:

Let ~ E L2(lR). The Fourier transform ~(f) off is defined by

%(f)(u):=J&t+yz)dz (2.1)

Remarks:

● Some authors put 27rinto the argument of the exponential or normalize
the integral by l/(2n) or 1//%.

● For short we write ~ instead of %(j).

Facts from Fourier Theory

Parsitxd’s Identity: (f, g) = l/(27r) (~, ~), where (~, g) := ~mj(z)g(z)dz.
In particular, 11~112= l/@ll~llz.

The Fourier transform is a on~twone mapping of J52(IR)onto itself
whose inverse is given by

If ~ is compactly supported then ~ is not, and vice-versa. ( Uncertainty
Principle of Fourier Analysis j cannot be band- limited in frequency
and time.)

Poisson Summation Formula:

(Provided both sums converge),
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One way to construct the family of Daubechies scaling functions and wavelets
is via Fourier analysis.

Construct a function ~ that generates an orthogonal MRA on J52(IR). Note
that

+(z) = ~g,+(2% – t) (2.4)
e

defines an operator 2’: L2(IR) ~ L2(IR) by

provided that xl /ge12 < m. Setting ~1 := !l’~, and applies T to .fI one
obtains a sequence {~~}n20. Idea: Define ~ as the limit - if it exists - of
this sequence:

11+–fnl12+o =Jn+w. (2.6)

(This @is then the fixed point of 2’: ~ = T+.)

Take the Fourier transform of Eqn (2.4):

(2.7)

The expression

~
(2.8)

is called the two-scale symbol of #.

Iterating Eqn (2.7) one obtains, at least formally

Suppose, w.1.o.g., that ;(O) = & @(z)dz = 1. 1. the infinite product in
Eqn. (2.9) converges pointwise for all u ~ Et (this means that one has to
impose growth conditions on the coefficients {C4}) to the Fourier transform
of a continuous ~uncfion, then we may define @ by

+(z)=wko(w’2”o (2.10)
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Growth condition: There exists an q >0 such that X1 Igfl Illv < co.

Existence of Function: Suppose that

● Et 9t-2i91-2j = Jij; (Orthogonality to translates!)

● zf9t=%

and that

(;(0)=1!)

773.(0) = [(1+ ei”)/2]N M(w), N ~ 1, (2.11)

is such that

3. supw~~Ilkf(u)l < 2N-*;

then the sequence of functions ~mdefined by Eqn. (2.5) with fO := X[0,1)4

converges pointwise to a continuous function ~~ whose Fourier transform is
given by

jm = B rno(u/2n). ~
n=l

Regularity: Suppose me(w) factors as above in Eqn. (2.11) and that item
(2) holds. If, in addition,

sup lM(u)M(w/2) “ ““ A4(u/2n-1)1 = B.,
WEIR

then

Let B = inf.(B.). Then

\~w E Cm, where m is the largest integer strictly smalIer than N – B – 1.

(2.131

4This is not the only fO that works! See, for instance, [42]
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Determining the {gl}: In terms of the symbol me(w), the requirement
that {~(” – 4)} forms an orthonornud basis of V = c[~] reads’

I??z,(u)p + lnzo(&J+7r)p = 1. [ (2.14)

Now suppose that the set of {gc} is finite, say f = 0,1,..., L. Then rno(~) is a
trigonometric polynomial in sin and cos and, since we require some regularity,
this polynomial should also satisfy Eqn. (2.11). Set M(u) := lmo(u)12 and
~(w) := likf(u)12. (This is also a polynomial in COSW.)

Objective: We need to find a polynomial A4(ti) such that

M(u) +M(u+7r) = 1 (2.15)

and

M(u) = (Cos’ y N(k)). ~~

Write JV(W) as a polynomial in sinzw/2 = (1 - cos w)/2:

N(u) = P(sin2 ti/2).

Set x := sin2u/2. Then Eqn. (2.15) becomes

I(1 – z)O(z) + z~P(l – z) = 1.1 (2.16)

The solutions of Eqn. (2.16) determine the coefficients {gI}!

By 1%’zout% Theorem there exist solutions to Eqn. (2.16).

For each N ~ 1, there exists an associated finite -set of coefficients {ge}.
These define the Daabechies’ family of scaling functions @.

Wavelets: Let he := (–l)~gl-t. Then the function

+(z) := ~f(–l)~gl-/#(2% – l?) (2.17)

defines an orthonormal basis for WI = VI 9 Vo; thus the functions {~~l}k,l~~
form an orthonormal basis of L2(IR).
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Properties of the Daubechies’ Wavelets:

~), go # O # gin-l, implies that supp~ =+(~) = Z2!;19e4(2~ –
[0,2N – 1].

The higher the regularity the larger the support.

If $ E Cn and @imJis bounded, then @ has m + 1 vanishing moments:

J-RZ%)(x)h = o, p=o,l,..., rn (2.18)

and # reproduces polynomials of degree at most m:

Zp = ~1 a~~(x – 1), for some real coefficients al. (2.19)

Good localization in time and frequency domain.

Only the Haar scaling function and wavelet are symmetric.

(Unmodified) Daubechies scaling fi.mctions and wavelets show bound-
ary effkcts when restricted to subsets of the real line, e.g. @lte or
semi-infinite intervak.

Daubechies scaling functions and waveletx are not interpolator. 5

The Daubechies wavelet 24 is an afine jracfd ~unciion 6 of the type
considered later in these lectures.

The Haar scaling function and associated wavelet are included in the
Daubechies family if N = 1.

There are so-called generalized functions or distributions which satisfy
tw~scale dilation equations but are not included in the Daubechies
family. C)ne such example is the Dirac 6 “’unction”. It satisfies the
dilation equation

EZ@ZZZl

6Given a finite set of interpolation points { (zj, yj ) I j = O,1,...,J},there exists a
finite set of constants {c(W)] such that yj = ~1 C(kl)@(2kZj – t), for all j = 0,1,..., J.

6An affinefractal function is a function whose graph is made up of a finite number of
affineimagesof itself. The graph of such a function has, in general,non-integraldimension.
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Cardinal Spline Wavelets (cf. [7])

The rnth order fundamental cardinal spline L~ has the interpolation property
with respect to the data {(i, &)}iEZ, i.e.,

(2.20)

It is known that L~ can be written in the form

(‘m(z) = Z2~Z %n,t~m x + ~ –e), (2.21)

for some hi-infinite sequence of real coefficients {~,t}. (This bi-infiite se-

quence is determined by salving L~ (i) = &i.) Note that Lm is not compactly
supported!

Theorem 2.1 (Cardinal Spline Wavelets) Let m E IN be fired and let

W~l := Vh~l @ V~m (cf. 13qn (1.4)). Define

@~(x) := L9(2z – 1), ??2EJN. (2.22)

Then the wavelet spaces {W~}~~z are generated by the {ti~}:

w~ = u[+’’$(2~ .)]. (2.23)

Note that since Lz~ is not compactly supported, the wavelets ~~ are not
orthogonal tootheir translates.

Theorem 2.2 (Compactly Supported Spline Wavelets) Let m E IN be
fixed. The fimctions

form a Riesz basis of WK. Moreover, SUppt/Ym= [0, 2Tn– 1].
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3 Brief Introduction to Fractal Functions

Let {(~j := j/2, yj) I j = 0,1, 2} be a given set of interpolation points. Let
jl be the unique linear function satisfying

fl(.i/z) = Yj j=o,l,2.

Denote by S; the vector space of all linear splin- with knots at {j/2~ I j =
0,1 ,...,2k}.

Define an operator T : S} ~ S; by

where Al, t = 0,1, is the unique afli.nefunction such that

(TfI)(o)=.fI(o), (~fI)(l)=.fI(l), (TfI)(l/2-),=(T.fI)(l/2+)=fI(l/2)

(Join-up Conditions)

The Sf, t = 0,1, are free parameters. Note that Tfl is a linear spline with
knots {O, 1/4, 1/2, 3/4, 1}.

The iterates of B applied to ~1 generates linear splines with increasing knot
sets:

~k+~:= T~fl = ~(~k.fl)● S;+l, kcN. (3.2)

Exercise: Calculaief2 expliciilyforyO=O, yl=l, andg2 =0.5!

Convergence of f~ as k -+ cm: If max{ l%, Sl} <1 then ~~ converges to a
continuous function ~ as k ~ w: Let g and g be two linear splines in S:.

l(Tg)(z) - (Th)(x)l ~ max{so, s1}l~(2z – 4) – g(2z – 1)1

19



Setting 11~11~:= sup{l$(z)[ 10 ~ x ~ 1}, one has

Il?”g - ThllmS may{sO, sl}\l.f -911m. (3.3)

Thus, if max{so, Sl} <1 the operator T is a contraction on the linear space of
cent inuous functions defined on [0, 1]. By the Banach Fixed Point Theorem,7
T has a unique &ed point j. Moreover, ~ is the limit (in the II. Ilm-norm)
of the sequence ~Eas k ~ co.

Definition 3.1 (Affine Fractal (Interpolation) Function) The unique

fixed point of the operator T defined in Eqrt. (3.1) is called an afine jractal
(interpolation,) function. (cf. [3, 3’0])

Self-referential structure of a fractal function: Let j be the affine
fractal function generated by T.

Here

{

AO(2X), 05x <l/2
A(x) := AI(2X – 1), 1/2 < x s 1.

0, otherwise

and j was set to be identically zero outside [0, 1].

Eqn. (3.4) expresses the fact that the graph Gt of $ is made up of two affine
images of itself, each of which is made up of two affine images of it.seLf,each
of which is ... ad infinitum!

Exercise : Show that Gf = wo(Gf) U wl(Gf), where Wf(z, y) := ((z –
t)/2, A~(2z –/) + s~y), / = o, 1!

Note that ~(j/2) = yj, j = 0,1,2, and, moreover, $(~/2~) = ~~(~/2h),
j=O,l ,.. ., 2k, k E IN. In other words, each space S~ is properly contained
in the space Zl of all &e fractal functions on [0, 1]: Formally

kEz4
7Banach Fixed Point Theorem/Contraction Mapping Theorem Let (X, l\. II) be a

completenormedlinearspaceand let T be a contraction on X, i.e., IITz–TYII < Cllx – vII,
0< C <1, then T has a unique fixed point x* in X. Furthermore,if xl is any pointin
X, the sequence {T~zl ] converges to Z*.

20
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Piecewise fractal functions

Observations:

● The interpolation values y := {Yj I j = O,1, 2}, uniquely determine
the Mine functions A := {~f 1.! = O,1}, which uniquely deterrnine”the
afii.nefractal function ~ = ~~y,~~for a given set of s := {sf I1 = O,1}:

Thus, the mapping y x ~(gl~) is a linear isomorphisxn.

● Eqn. (3.4) is an inhomogeneous two-scale dilation equation.

. The afhe fractal fimction j(./2) restricted to the interval [0, 1/2), re-
spectively, [1/2, 1] is an affine fractal function on its own right generated
by afhe mappings Am= &, &l = AO(.– 1) + SIAI – SOAOon [0, 1/2),
respectively by Jlo = Al + SOJO—SIJ1 and All = AI(. - 1) on [1/2, 1].

AS ~ = ~(V,S) is uniquely determined by y, there exists a canonicai ~asis
for 71: Fix a set of parameters {St I / = O, 1} and let y. := {1, O,O},

VI := {O, 1, O}, and V, := {0, O,1}. Let ~j be the unique affine fractal function
generated by the interpolation values Yj> j = 0,1,2. If g = {yi I j = 0,1, 2}

is any set of interpolation values and j = ~Y the uniquely determined fiactal
function, then

-
(3.5)
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Definition 3.2 (Piecewise Fkactal Ihmction) On each interual of the form

[1,1 +1) construct a fractat function f!, 1 E Z. Then the function

is called a pieceun”se fmctal function.

-1

Y-0.2

.5

-cl. 75

1

o.75- -

0.5. -

0.25. -

3

-1+ I

Figure 3: A piecewise fractal function

Finitely generated shift-invariant and refinable spaces may be constructed
using these piecewise fract al functions: For inst ante, is shown shortly that

the space

[vi:={9: R-+ Et I 91[,,,+1)= w’ E z} n L’(IR)I (3.7)

is spanned by two ortho~onal generators. Moreover, the refinable spaces

{V~}~,Z form an orthogonal MRA of L’(lR).
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4 Construction of the DGHM Multiwavelet

(Presentation given here is due to Donovan, Geronimo, and Hardin)

Recall Eqn. (1.10). Start again with the hat function h(z) = (1 – lx])+.
Introduce a new and yet unknown continuous function w with suppw = [0, 1],
and define V. := O[h, w].

Idea: Find a function u such that

u is supported on [– 1, 1];

u is a linear combination of h, w, and w(””+ 1);

u is orthogonal to its translates u(. + 1) and to w;

Vo= CT[u,w].

Define

u(z) := (1 - PalW1)h

~ (h, w) (h, w(. + 1)) W( + ~,
=— — —

(w, w) w (W,w) . .

Note that w is already orthogonal to its integer shifts. Need

(U,u. –1) =0.

This is equivalent to

I(h,h(.- 1))= J@y&pq (4.1)

Refinability implies that w(./2) c VO; i.e., w(./2) must be a linear combina-
tion of h{” – 1), w, and w(. – 1):

zu(z/2) = h(z – 1) + sow(z) + s~w(x – 1). (4.2)

But Eqn. (4.2) is recognized as an inhomogenous two-scale dilation equation
of the form (3.4)! Thus, if max{lsol, Isll} < 1, the solution of Eqn, (4.2) is
an tine fractal function. (Note that ~o(x) = z and Al(x) = 1 – x.)
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Employing the fixed point equation (3.4), one cm derive explicit formulas
for the inner products of fractal functions.

Exercise : Suppose that f and 9 are two afirze fmctal functions generated
by afine map At, respectivel~, pt, .? = 0,1. Use Eqn. (5’.4) to derive an
explicit formula for the inner product (f, g)!

Choosing so = S1 =: s causes w to be symmetric about the line z = 1/2.
(Veri& this!). In this case, one obtains

(W,l) = 2(11 s,—

(h, w) = (h, w(- + 1)) = ~(11 ~,—

(w, w) =
2+s

6(1 – S)2(1 + s)

(It,h(. - 1)) = ;.

The orthogonality condition (4.1) then gives

m
Normalizing u and w yields:

4’(’) ‘= &

~’(z) := u .

.0 U,u
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Figure4: The orthogonal generators @l and 42.
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-50

-75

Figure5: Theorthogonal multiwavelet @and @2.
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Properties of the DGHM scaliig vector:

q32is made up of two affine fractal functions; one with support [–1, O]
the other with support [0, 1].

Since Isl = 1/5 < 1/2, the orthogonal generators areelements of the
function space Lipl, g and thus possess a first derivative almost every-
where. This first derivative is an element of L2(IR).

Since the hat function is a linear combination of 41 and @z (Show this!),
the scaling veetor @ := (gP@2)~ has the same approximation order as
the hat function:

z’= ~c$d(z - t), p= 0,1.

The dilates and translates t$~~remain orthogomil when restricted to
compact intervals. (This is very important when (multi) wavelets are
employed to solve boundary value problems.)

q5can handle non-uniform geometries such as irregular grid spacings.

The scaling vector @ has smaller support and higher regularity than
the corresponding Daubechies scaling function with the same approxi-
mation order, namely, z+.

Symmetry /antisymmetry

#is interpolator (since +1 and #2 are fractal interpolation functions).

8A functionf is said to belongto the functionspaceLipl if thereexistsa positive
constant C such that

If(z) – ~(z’)1 < Clz – z’1 for all x,x’6 JR.
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Calculation of Matrix Coefficients for the Scaling Vector:

Analytically

Matrix Refinement Equation:
1

4’(Z)
()42(X) (

= tiE;._2 Gt $:[: – :] ) . (4.3)—

The values of@ = (~’@2)~ at xj = j/22, j = 1 ,23, are known. (Fixed. . .
Point Equation for fractal functions!) Thus, the’ entries in the matrices Gl,
[=–2 ,...,1, can be computed from Eqn. (4.3).

G-z = (3x2/lo 4/5
)

, G-l =
(

3@lo o
–1/20 –3fi/20 9/20 I/&’ )

(
GO = 0

0

) (
00

9/29 –34/20 ‘ ‘1 = –1/20 o )

Geometrically (Donovan-Geronim~Hardin)

s CY:= (a6c)T, @ := (cbu)T, and v := (def)T;

● (42? 02) = 11~112+ (UW)2 + IIP112 = 1;

● llCYl\2= 11~1]2and e = 41(1/2);

● (#’(. – /), @“) = di~~~. This is equivalent to saying that {a, ~, Y} is an
orthonormal basis of IR3.
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Calculation of the Multiwavelet

AnalyticaUy

Solve Eqns. (1)- (1.18)

(@20 3&/20
H-z = o

)
H-l =

(

–9@20 1/6
o’ 0 –1/4 )

Ho =
(

3@20 –&/20

) (

-fi/60 O
3fi/lo _/j~ 7 ‘~ = -&/30 o )

Geometrically (Donovan-Geronim&Hardin)

c Look for two wavelets supported on [– 1, 1];

s Let b := (a,’b’c’)~ and e := (d’e’~’)~;

● (0,41) = (4,42(” – l))= Oimplies So-f =eocx=O.

==$- e multiple of ~.
Similarly, J multiple of a.

● ~’ : (cx) (h) (~) (symmetry);

● 42: (–a.) (0) (~) (antisyrnmetry);

● (@l,~2) ~ h = –1/fi
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More on Scaling Vectors and Multiwavelets

Intertwining MRAs

Let q5be a finite collection of compactly supported L2-functions generating

an MRA:
v,:= a[4(2kj] kciz.

Theorem 4.1 (Donovan-Geronimo-H.mdin) There exists a pair of inte-
gers (k, m) and some orthogonal lf&4 {Vm}~~Z such that

k!@k.1 (4.4)

{V~} and {~~} are called intertwining MRAs.

Intertwining MRAs may be used to construct an orthogonal MRA from a
nonorthogonal. The basic idea is to use some of the generators from Vj+~ to

modify the generators of ~..

Example 4.1 Piecewise Quadratic Orthonormal Scaling Vector (cf. [38])

Let h = (1 – lX1)+ be the hat function, let q(z) := (4z – 4Z2)+, and let

V. := cr[h, q]. It follows from approximation-theoretic considerations that
the refinable space V. has approximation order three, i.e., every polynomial
of degree at most two can be written as a linear combination of the translates

of h and q. Clearly, h and q are not orthogonal generators.

Objective: Find an orthonormal refinable subspace fio of VOsuch that

For this purpose, let

hi(x) := (1 - I%[q])ll(~)

= h(z) - -q(z)- (’(\-++;’h),(Z+ ,).
7 7
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Note: qlhl.

However, (hl, hl(. – 1)) #O.

Now choose a function h2 with support [0,1] from VI. Note that func-
tions from VI restricted to [0,1] form a three dimensional space a[i(2.
–l), q(2.), q(2 , –l)].

h3(z) := (1 – Pa[~21)h@.

Need:

● (h3,h3(.– 1)) = o.

The first requirement is easily satisfied: As q~ n VI is two dimensional let

PI(Z) := q(2z) – q(2x – 1), antisyrnmetric about z = 1/2!

pa(x) := q(2z) + q(2z – 1) – :h(2z – 1).

Now

(h3, h3(. - 1)) = (hi, hl(. – 1)) –
(hi, h,)(hl(. - 1), h2)- ~~how this,)

(h,, h,)
. .

(4.5)

Thus,

(hl, hl(. - 1))= ~h’’h’~~’f;j’)’h’} (4.6)

The unknowns SI and S2 are now determined by Eqn. (4.5):

~
(4.7)
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Normalization yields:

2.5

-1

-0.5 -

-1

Figure 6: The orthonormzd generators @, 42, and +3.
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Support Properties of Scaling Vectors

Recall that if # is a scaling function whose refinement equation is

+(x) = :914(2z–~), %gL # 0,
!=0

then supp+ = [0, L].

The situation is not as simple for scaling vectors.

Theorem 4.2 Suppose the scaling vecior ~ satisjies

q!(z) = ~ G@(2z – 1)
t=o

with Go, GL # O E IR”xr. Ij

1. If Go is nilpotent 9 then supp~ ~ [1/(2’ – 1), L];

2. Ij GL is nilpotent then supp# ~ [0, L – 1/(2” – l)];

3. Ij neither Go nor GL is nilpotent then supp#J = [0, L].

Remark: Tighter bounds can be obtained by considering the individual

entries in the matrices Ge. (cf. [39]).

‘A matrix M is called nilpotent if some positive integer power of M is the zero matrix:
there exists an n E IN such that M“ = 0.
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!5 Applications

Decomposition and Reconstruction Algorithm

Since V~+~ = Vk @ W~+l, every f~+l E V~+l can be decomposed into an
“averaged)’ or ‘blurred” component ~k G V~ and a “difference” or ‘fine-
structure” component g~+l C W~+l:

fk+l= A + gk+l.

This decomposition can be continued until ~k+l is decomposed into a coarsest
component j. and k difference components g~, rn = 1, ..., k + 1:

A+l=.fo +91+ . ..+9k+9k+l.l (5.1)

This decomposition algorithm can be reversed to give a reconstruction akjo-

rithm: Given the coarse components together with the fine structure comp~
nents one reconstructs any fk c Vk via reversal of Eqn. (5.1).

Both algorithms are usually applied to the expansion coefficients (in terms
of the underlying basis) of f and g and they involve the matrices G4 and He.

More precisely, the decomposition algorithm gives

where the vector coefficients aw, ~k_l,fl, and ~k_l,t are related via

This last equation defines an operator ~k : 12(W) :+ f?2(W) x ~2(W)via

I ~k(~kt!) = (~k-1,1,pk-l,?), .kGZ,l (5.3)

where the right-hand side is given by Eqn. (5.2).

Note that @-1 and @k_~ are sampled only at the even integers (down-
sampling by 2: $ 2).
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IQ + al + . . . + a~.1 + cx~

Figure 7: The decomposition algorithm

Figure 8: The reconstruction algorithm

The reconstruction algorithm is, obtained as follows: If V~_l

(5.6)

(5.7)

3 h-l =

ak! = ~p Cp-zl %-1,[ + DII–2!6k_l,p (5.4)

Again, this last equation implies the existence of an operator %l~_l : ez(m:) x
t2(lR”) ~ t!2(IR’) given by

%-l(ff~-l,~,pk-l,t) = ak~, k~Z, (5.5)

with the right-hand side given by Eqn. (5.4).

Note that only the even indices are used to obtain ak. Zeros are used for the
odd indices (interlacing of zeros or upsamplingby 2: ~ 2).
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Compression

The finiteness of the decomposition and reconstruction algorithm suggests
the followirig compression schemes, also called quantization.

Suppose ~jV e VN has been decomposed into

~N~(~c)@~”””~~)

Choose a threshold T* >0, for each level n = 1,..., N.

FOR (n =1 ton= N) DO

IF llP7all ~ T~

set ll~nll = O

ELSE retain

(5.8)

This creates a new sequence (FN PN_I . . . PI).

Reconstruction:

(hmp?’essh: l[~jv – 6NI12 < ?

Compression ratio: #a
#ii



Signal Processing

HT

< 7

El
2 + ““’

•1+ t-z

(5.10)

G: low-pass filter H: high-pass filter

Signal: dlscretly sampled function {~(n) ln~21}. Usually jEL2(lR,) (finite
energy); thus, {~(n)} E &(IR).

Polyphase form: ~ E 12(IR)r, r z 1.

f(m)

[:)

f(rn + 1)

f(n) := f(r~ + 2) E~“.

f(nz~ r – 1)

(5.11)

Associate with ~ a sequence y via some linear, continuous, invertible, and
time-invariant operator @ : .12(IR)” ~ 12(lR)r:

y:= @f. (5.12)

It is well-known that an operator such as @ is a convolution operator (cf.
[21]). I.e., there exists abi-illfinite matrix q=(q(n)), q(n) anrxr matrix,
such that

~ (5.13)

q or its z-irans$xvn Q(z) := En q(n)zn is called a prefilter for 8.

If r = 1, the identity is commonly used for ~.
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Conditions on Prefilters:

●

●

Orthogonality: qpreserves theenergy of the signal.

Preserving approximation order:
are also samples of a polynomial

if ~ is a polynomial signal
(of the same degree).

then q * f

Without prefiltering, constant signals may become non-constant.

Compression schemes applied to signals

● Good reconstruction;

● Denoising (uses statistical methods). Cf. [19, 20];

Data and Image Compression

Image: Sequence of gray-scales ranging from O (black) to 255 (white).

lkf x N grayscale image w sequence of length MN (unfolding of columns/rows).

Data/Image compression: Represent the same image by a sequence y of
length (considerably) less than MN.

Lossy compression: information/data is discarded, cannot be recovered.

Apply the compression scheme (5.8) to “Lena” using the I)GHM multiwavelet
and compare to the Daubechies D4 = 24 and JPEG.

Pictures and information taken from [38].
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Lena

CompRatio
PSNR
MWAV

512x512

17:1

34.98
DGHM

Lena 512x512
CompRatio 17:1
PSNR 34.45
WAV JPEG

Figure 16: Orthogonal Prefiltered DGHM vs JPEG: Compression Ratio 17:1
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Lena 512x512

CompRatio 33:1
PSNR 31.83
MWAV DGHM

Lena 512x512
CompRatio 33:1
PSNR 30.5226

WAV JPEG

Figure 17: Orthogonal Prefiltered DGHM vs JPEG: Compression Ratio 33:1
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Figure 18: Orthogonal Prefiltered DGHM vs JPEG:

Lena 512x512
CompRatio 39:1
PSNR 30.53
MWAV DGHM

Lena 512x512
CompRatio 39:1
PSNR 28.97
WAV JPEG

Compression Ratio 39:1
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Lena 512x512

CompRatio 60:1
PSNR 29.29
MWAV DGHM

Lena 512x512
CompRatio 60:1
PSNR 24.4333

WAV JPEG

Figure 19: Orthogonal Prefiltered DGHMvs JPEG: Compression Ratio 60:l
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Differential Equations

-u” + ‘u= f, u(o)=u(l)=o. (5.14)

Classical Solution: u E C2 and $ c C.

Requirements are too strong for some realistic problems such as shock waves,
turbulence, etc.

-Weak Solutiou: Let v 6 G1.

Integration by parts

u or, equivalently,

-J
1

0 ““V’X+l’UV’X=D”X

together with boundary conditions yields:

I(u’, v’)+ (,U)V = (f,v).}

Requirements now are: U E ll; [O,l] and f E H-l

IH;[O,l] = {f I f’ c L2(lR); f(o) = j(l) = 0}.1

\If-’ = {all linear functional ~ : II: ~ Ill. }.\

(5.15)

(5.16)

Galerkin Method: Approximate weak infinite dimensional solution space by
finite dimensional approximation space Vi such that V~ ~ H; as k ~ co.

Exercise: Suppose {e~~l<~<N is a basis for some finite dimensional approx-.—
ima~ion space vk. p~ojed ~ onto vk:

Show that taking as v in Eqn. (5.15) all the ej, j = 1, . . . . N, yields an
algebraic linear system for the unknowns Ci!
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Choose as V~ = Vo 6 @:=l w..

●

●

●

●

●

●

●

Need multiresolution analysis defined on [0, 1]! Most constructions need
to add boundary junctions to avoid unwarranted boundary effects or
need to pen”odize the problem.

Due to its construction based on fractal functions, the DGHM multi-
wavelet is ideally suited for boundary value problems. Moreover, the
DGHM multiwavelet can handle non-uniform geometries!

Resulting matrix in linear system ill-conditioned.

Preconditioning necessary; exact preconditioned known.

Multiwavelet bases local bases (short support).

Two parameters: scale and location.

Ideal for detection of shocks and other singularities.

Fast solvers for resulting preconditioned linear system.

46



6 Generalities

Biorthogonal Wavelets:

Instead of requiring

(#kt, +kt’) = 6~~’1~ (tikth ~k’e’) = 8kk’&ti’1

4 aud $ are to satisfy the biorthogonahty conditions

with respect to the dual bases {&kl} and {~~t}.

(6.1)

Advantages:

More flexibility.

Optimal convergence rates for certain integral equations.

Construction of second generation wavelets.

Shift regularity and approximation order back and forth between bases
and dual bases.

Oblique Wavelets:

Projection onto subspaces not orthogonal but parallel to certain subspaces.
(cf. (1])
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